bandera
  • Preguntas frecuentes sobre prototipado rápido de CNC y mecanizado de piezas Mar 18, 2025
    1. ¿Cuáles son las ventajas de Prototipos CNC ¿Más allá de la impresión 3D?Respuesta: Los prototipos CNC suelen ser superiores a la impresión 3D en cuanto a precisión y selección de materiales. El mecanizado CNC puede procesar diversos materiales, como metales y plásticos, y ofrece una alta calidad superficial, lo que lo hace más adecuado para pruebas funcionales y la producción del producto final.Comprender el impacto de la participación temprana en la creación de prototipos en el diseño de productosLa participación temprana de expertos en prototipado es crucial en el proceso de diseño del producto. Al incorporarlos desde las etapas iniciales, los equipos de diseño pueden aprovechar sus habilidades para prever y mitigar posibles problemas durante la fabricación.Beneficios clave de la participación temprana de expertos:Colaboración mejorada: al integrar a los expertos en creación de prototipos desde el principio, los equipos de diseño y fabricación trabajan juntos sin problemas, lo que garantiza un enfoque unificado durante todo el proceso de desarrollo.Identificación temprana de desafíos: estos expertos aportan información valiosa que ayuda a detectar posibles obstáculos de diseño mucho antes de que se conviertan en costosos problemas de fabricación.Optimización para la fabricación: con su amplia experiencia, los profesionales de prototipos pueden sugerir modificaciones que hagan que el diseño sea más fácil y rentable de producir.Refinamiento del rendimiento: las aportaciones tempranas garantizan que el producto no solo cumpla con las expectativas de rendimiento, sino que las supere, gracias a pruebas iterativas y al refinamiento guiados por la experiencia en creación de prototipos.En resumen, aprovechar el conocimiento de los expertos en prototipos al comienzo de la fase de diseño da como resultado una transición más fluida del concepto al producto final, con mayor eficiencia y calidad.2. ¿Cuánto dura habitualmente el ciclo de procesamiento de los prototipos CNC?Respuesta: El ciclo de procesamiento de los prototipos CNC depende de la complejidad del diseño y de los materiales seleccionados. Los diseños sencillos pueden completarse en 1 a 3 días, mientras que los prototipos complejos pueden tardar entre 5 y 7 días o más.3. Cómo la creación de prototipos CNC reduce los costes de producciónEl prototipado CNC desempeña un papel crucial en la minimización de los gastos generales de producción al abordar los desafíos de diseño y fabricación desde el principio. A continuación, le explicamos cómo:Identificación temprana de fallas: Al crear un prototipo, se identifican posibles problemas en los procesos de diseño y producción antes de que se agraven. Esto permite ajustes rápidos, asegurando que errores costosos no se conviertan en problemas en la producción en masa.Eficiencia en las iteraciones: En lugar de realizar una producción completa para probar un diseño, el prototipado CNC permite realizar pruebas y refinamientos iterativos. Este proceso ahorra gastos significativos asociados con cambios a gran escala una vez iniciada la producción.Optimización de materiales y procesos: Mediante el prototipado CNC, las empresas pueden experimentar con diversos materiales y métodos para determinar las opciones más rentables sin invertir grandes recursos. Esta experimentación permite optimizar los procesos de producción, minimizando el desperdicio y reduciendo los costos.Mitigación de riesgos: al simular el uso y las condiciones del mundo real durante la creación de prototipos CNC, se pueden abordar problemas imprevistos, lo que reduce la probabilidad de retiradas costosas o fallas del producto después del lanzamiento.La incorporación de prototipos CNC en la fase de desarrollo puede generar oportunidades de ahorro de costos estratégicos, garantizando una transición más fluida del concepto al producto listo para el mercado.4. ¿Cómo garantizar la precisión dimensional de los prototipos CNC?Respuesta: La precisión dimensional está garantizada mediante equipos CNC de precisión, un estricto control de los parámetros de procesamiento y pruebas posteriores. El uso de herramientas y cortadores de alta calidad también es fundamental.5. ¿Cuáles son los materiales más utilizados en la fabricación de prototipos CNC?Respuesta: Los materiales comunes incluyen aluminio, cobre, acero inoxidable, plástico ABS y nailon. Estos materiales son ampliamente utilizados debido a sus excelentes propiedades mecánicas, procesamiento y efectos de tratamiento superficial.6. ¿Es posible producir prototipos CNC en lotes pequeños?Respuesta: Sí, el prototipado CNC es ideal para la producción en lotes pequeños, especialmente cuando se necesita verificar rápidamente el diseño o realizar pruebas de mercado. Su flexibilidad y precisión lo convierten en la opción ideal.7. ¿El prototipo CNC es adecuado para geometrías complejas?Respuesta: El mecanizado CNC permite manejar geometrías muy complejas, especialmente con máquinas CNC de 5 ejes. Sin embargo, algunos diseños extremadamente complejos pueden requerir utillajes especiales o un procesamiento paso a paso.8. ¿Cuáles son las opciones de tratamiento de superficies para prototipos CNC?Respuesta: Los tratamientos de superficie comunes incluyen Arenado, anodizado, galvanoplastia y pulido. Estos tratamientos pueden mejorar la resistencia a la corrosión, la dureza o lograr efectos estéticos específicos.9. ¿Para qué industrias son adecuados los prototipos CNC?Respuesta: Los prototipos CNC se utilizan ampliamente en muchas industrias como: piezas de automóviles, piezas aeroespaciales, piezas de dispositivos médicos, piezas de electrónica de consumo, piezas de equipos industriales, etc., y son especialmente adecuados para escenarios de aplicación que requieren alta precisión y verificación funcional.10. Cómo elegir el adecuado Servicio de prototipos CNC ¿proveedor?Respuesta: Al seleccionar un proveedor, debe considerar la capacidad de sus equipos, su experiencia técnica, su ciclo de entrega, su sistema de control de calidad y la opinión de sus clientes. También es importante comprender si puede cumplir con los requisitos específicos de diseño y materiales. ¿Cuáles son las ventajas de contar con capacidades internas de mecanizado y fabricación? Las capacidades de mecanizado y fabricación internas ofrecen una gama de ventajas que diferencian a las empresas de aquellas que subcontratan estos servicios:Velocidad y eficiencia: Al gestionar internamente las tareas de mecanizado y fabricación, las empresas pueden reducir significativamente los plazos de entrega. Esta eficiencia significa que los proyectos avanzan desde la concepción hasta su finalización mucho más rápido que si se contrataran servicios de terceros.Control de calidad mejorado: Al realizar cada paso del proceso en un solo lugar, se aumenta la capacidad de supervisar y mantener los estándares de calidad. Este control minimiza los errores y garantiza que cada producto cumpla con los criterios de alto rendimiento.Rentabilidad: Las capacidades internas eliminan la necesidad de contratistas externos, lo que reduce los costos generales del proyecto. Los ahorros se trasladan a los clientes, lo que aumenta la competitividad del servicio en el mercado.Flexibilidad con el prototipado: Se pueden realizar ajustes rápidos durante la fase de prototipado, lo que permite iteraciones y mejoras rápidas. Esta agilidad es crucial para cumplir con las especificaciones del cliente y adaptarse rápidamente a los cambios.Confidencialidad y protección de la propiedad intelectual: Realizar todas las operaciones internamente reduce el riesgo de robo o fugas de propiedad intelectual, manteniendo sus diseños e innovaciones seguros.Al integrar estas capacidades internamente, las empresas mejoran su eficacia operativa general y ofrecen productos superiores con mayor velocidad y confiabilidad.11. ¿Por qué se considera la creación de prototipos una fase crítica en el desarrollo de productos?El prototipado es un paso vital en el desarrollo de productos gracias a sus múltiples beneficios. En esencia, el prototipado implica la creación de un modelo inicial de un producto. Este paso fundamental permite a los equipos explorar y probar diversos aspectos, como la funcionalidad y el diseño, antes de escalar a la producción completa.Beneficios de la creación de prototipos:Detectar defectos de diseño con anticipación: Al experimentar con un prototipo, se pueden identificar posibles problemas de diseño y funcionalidad antes de que comience la producción en masa. Este enfoque proactivo ayuda a evitar costosas revisiones posteriores.Mejora del rendimiento del producto: las pruebas iterativas de un prototipo garantizan que se puedan realizar ajustes y mejoras de diseño de manera eficiente, lo que en última instancia conduce a un producto que funciona bien en condiciones del mundo real.Rentabilidad: Los ajustes tempranos ahorran tiempo y recursos considerables. Al detectar problemas con antelación, las empresas pueden evitar costosos errores de producción y optimizar su inversión.Satisfacer las expectativas del cliente: los prototipos ofrecen una forma tangible de evaluar si un producto se alineará con las necesidades del consumidor y los puntos de referencia de calidad, garantizando así una mayor satisfacción del cliente al momento del lanzamiento.En resumen, la creación de prototipos es indispensable, ya que permite a los equipos refinar y perfeccionar un producto, elevándolo para que cumpla de manera efectiva con los estándares de la industria y las demandas de los consumidores.
  • What materials are best for custom robot parts? Mar 25, 2025
    Metals: Aluminum, stainless steel, and titanium alloys are ideal materials for custom robot parts because they are lightweight but strong, making them ideal for parts that need to withstand heavy use and frequent movement. Copper, brass, and bronze have excellent electrical conductivity, making them ideal for parts that require electrical current or wiring.   Plastics: ABS, polycarbonate (PC) and acrylonitrile  stybutadienerene (ABS) are all highly durable materials that can withstand extreme temperatures and harsh environments, making them suitable for robotic applications. High density polyethylene (HDPE), polypropylene (PP), and nylon offer flexibility while remaining light, which makes them ideal for creating custom robotic parts with complex shapes or complex designs.                
  • From prototyping to production – how 3D printing is evolving Printing production-run volumes of parts is becoming an increasingly viable solution. Apr 08, 2025
    While the use of 3D printing for rapid prototyping has been developing since the late 80s and is now extremely common, the industry has also steadily continued its move towards production applications, including low-volume production, mass customization, and serial production. “We’re seeing more and more large-quantity orders and repeat orders,” says Protolabs’ Robin Brockötter. “There’s definitely a trend towards full-scale production.” This is influenced by many and diverse factors, including a preference for more local production amid global supply-chain disruptions (9% of our survey respondents said low susceptibility to supply chain issues is the main reason why they opted for 3D printing over other manufacturing methods) and sustainability concerns. In 2023, 21% of our survey respondents used 3D printing for end-use parts—up from 20% in 2022—and 4% used it for aesthetic parts. When it comes to replacing injection-molding manufacturing with 3D printing processes, it’s all about order volumes: for low-volume production, 3D printing is often the more cost-effective solution, while at higher volumes, injection molding becomes more economical. However, the point where that happens— the ‘sweet spot’ of maximum viable 3D printing order volume—is shifting. “3D printing can now start producing more and more parts before injection molding becomes cheaper,” says Brockötter. Results from our 2024 survey support this. In our 2023 survey, doubts around 3D printing as a choice for “production volume and scale” led 47% of respondents to opt for different manufacturing technologies, but this year that number has dropped to 45%, showing increased confidence in scaling with 3D printing. And throughout the years, our surveys also show a steady growth in production-run volumes: respondents saying they printed more than 10 parts rose from 36% in 2020, to 49% in 2021 and to 76% in 2022. While this figure has stayed the same for 2023, marking stabilization, the percentage of respondents saying they printed more than 1000 parts rose from 4.7% in 2022 to 6.2% in 2023. Beyond the actual printing process, there are many other aspects that influence the scalability of using 3D printing technologies for production, from software, design, and materials to post-processing and finalizing tasks such as cleaning, secondary finishing, spot removal, stress relief, and inspections. As the 3D printing ecosystem continues to mature, a support system of companies providing many of these services is springing up around 3D printing businesses, simplifying production processes. This in turn will encourage the uptake of these processes. In addition, increasing familiarity with DFAM—the additive design space—will mean engineers and designers will become more proficient at navigating design limitations and opportunities and leveraging new materials. And many obstacles are becoming less of an issue due to new developments and technologies. One example is post-processing, which can currently present a bottleneck. 27% of respondents to the 2024 survey named “post-processing and finishing requirements” as a reason for choosing other manufacturing methods over 3D printing, and 40% listed “quality and consistency of the final product”. However, as vapor smoothing is becoming prevalent across the industry and surface finishes are being radically improved, postprocessing is becoming less of a hurdle for production-level 3D printing. “Vapor smoothing machines have come a long way in recent years,” says Grant Fisher, supply chain manager at Protolabs, “specifically for vapor smoothing Nylon 12”—the most common material for MJF and SLS parts. “We continue to see a lot of growth in MJF and SLS, and vapor smoothing is a great option for aesthetic and end-use parts.” Another example is automation of the manufacturing process. For instance, computer-visionsupported systems to help sort finished 3D printed parts can represent significant labor savings and cost efficiency, further pushing the numbers in favor of 3D printing. Standardization is one key issue that remains, particularly in sectors such as aerospace, automotive and the medical industry. “We do a lot of work with aerospace, particularly in metal printing,” says Protolabs’ Eric Utley, “and the big hurdle that everyone’s dealing with is standardization. Building out that validation and standardization—I personally think it will take a few years to unstick that.” But the will is there and the cogs are moving. “It is a big talking point in the wider industry,” says Utley. The medical and aerospace sectors are the ones where 3D printing for production will continue to play the biggest role, says Alex Huckstepp. “These are the industries that are willing to spend a lot on high-performance, high-quality, complex custom designs and components. And that was always thought of as where 3D printing in production could make sense. The real production growth is still coming from those two industries. The space-race boom that we’re seeing has definitely been a tailwind for 3D printing.” There’s another point that’s often overlooked when discussing production-level 3D printing, sometimes to the detriment of embracing its incredible potential: it shouldn’t necessarily be approached as a replacement for existing technologies at all. “I think a lot of people have in their mind that 3D printing is an injection molding competitor—yeah, it’s not,” says DIVE’s Adam Hecht. “It’s an entirely new way of making things. They just don’t compete. There’s some overlap, yes, but ultimately, their careers separate. 3D printing is an entirely new tool. It’s enabling us to solve problems, and ultimately, to make products that previously couldn’t exist. All the low-volume, specialized applications and products where you previously had to tell people, sorry, we can’t make that—we can make them now. It’s just entirely different.” And one thing that’s going to enable and accelerate this are the specialized materials that are increasingly emerging on the 3D printing market.
  • About CNC Machining Apr 11, 2025
    What is CNC machining? CNC stands for Computer Numerical Control, so CNC machining can be defined as a manufacturing process where a computational code controls the parameters of the process, including: Movement of the machine tool head. Movement of the part or feed. Rotational speed. Tool selection, for multi-tool heads. Amount of coolant if needed. In simple words, it means using computational power to control and monitor all the necessary movements of a machine to manufacture parts out of raw material. How does CNC machining work? Basically, the CNC program provides commands that the machine can read and understand. These commands tell the motors of the machine when and how to move the corresponding components to achieve the desired results. The first CNC machines used punch cards with the written code and had limited flexibility for the movement of the tool. However, current CNC machines can be associated with CAD/CAM software (Computer Aided Design/Computer Aided Manufacturing). This means that the designer can create a 3D model of the part and then translate the parameters of the part into a CNC program by means of the CAM software. This final program, created by the CAM software, is fed into the machine and the manufacturing process begins. The part is finished when the machine finishes running the program. Another important aspect of the current and the most sophisticated CNC machines is the flexibility they have, since they can move in a range of 2.5 axes, 3 axes or 5 axes depending on the type of machine. CNC machining for woodWhile many might think that wood working is an art for only the most skilled carvers, the truth is that CNC machining for wood allows for a more efficient work. Even for the most complex designs. With CNC machining for wood is possible to produce larger parts in a shorter time. It also allows the woodworker to keep the natural beauty and strength of the wood used intact, something difficult to achieve with other type of machines for processing wood. Other benefits from using CNC machining for wood are: Complex shapes that are too difficult for manual work can be achieved easily. Higher precision and shorter production times. Higher efficiency and reduced material waste. Increased profitability. CNC machining for medical industryIt is well known that the medical industry is a very demanding one with all the standards that must be met. This is the case of CNC machining for medical industry. Fortunately, as it was mentioned above, the main benefits of CNC machining are high efficiency and high accuracy that leave almost no room for error. This makes CNC machining for medical industry the best manufacturing option in the sector, being precision machining the chosen alternative to meet the tight tolerance requirements. Other common requirements include: Complex geometries that usually require 5-axis machines. Very high levels of cleanliness. Possibility of machining different special materials. Top-level surface finish. Common applications of CNC machining for medical industry include: Implants and prosthetics. Surgical instruments. Electronic components for medical equipment. Micro medical devices which require micromachining. CNC machining for castingCasting is a manufacturing process that depends of good molds to obtain desired results. This means that it is necessary to select the best process to produce the molds. CNC machining for casting in 5-axis machines reduces the chance of error due to having to move the casting between machining operations. This error reduction allows for the casting to meet the tightest of tolerances. Another good application of CNC machining for casting is that most castings require a post processing to improve surface finish. CNC machining for casting allows to achieve the surface finish desired in a quick and efficient way. Moreover, CNC machining can deal with the type of materials commonly used for castings such as aluminum, which can be a problem for other manufacturing problems. CNC machining for aluminum Being a lightweight metal, aluminum is the preferred material for many applications, being automotive and aerospace the top users. However, its use in some of these applications requires very complex shapes. Moreover, thin parts may be required, which increases the possibility of deformation due to the low hardness and high thermal expansion of the material. Here’s where CNC machining for aluminum becomes important. 5-axis CNC machining for aluminum provides benefits such as: It is simple to set up, which reduces lead times and improves the efficiency It allows to work with complex geometry thanks to the ability of avoiding collision with the tool holder while tilting the wok table or the cutting tool. It can use shorter tools that are more rigid, some with high spindle speed rates which is achieved by reducing the load on the cutting tool. The parts don’t have to go through different workstations, meaning that the errors are reduced, the accuracy is increased, and the quality is ensured. These machines can use other alternatives such as water jet cutting or laser cutting which eliminate the problems of working with very thin aluminum pieces. CNC machining for aerospace parts With the number of components needed to assemble an aircraft, and the complexity of such components, it is clear that the aerospace industry requires the highest precision and efficiency possible out of a manufacturing process. Therefore, CNC machining for aerospace parts has grown in popularity, and it is now the go-to option for aerospace components manufacturing. CNC machining for aerospace parts needs to deal with complex requirements such as: Working with thin walls. Limiting material deformation, for example, when working with aluminum and other lightweight materials. Working with curved and complex geometries. On the other side, CNC machining is the best option for aerospace parts production as it provides the following benefits: It is a cost-effective process. It can provide high-quality results. It can work with custom designs. It provides high accuracy and precision engineering. It reduces and sometimes eliminates human error. It can produce complex geometries. CNC machining for jewelry In the past, jewels were only made by hand by fine artisans. However, it is not the case anymore, as more and more jewel producers are implementing methods to improve their efficiency and increase their profitability. There are different ways CNC machining for jewelry help artisans and jewel producers in general. The most common benefits found are: Easily create master models for casting the jewels. Quickly create casting molds with high accuracy. Create fine end-use jewels when using sophisticated CNC machines. Quickly and accurately create custom engravings. Easily finishing the jewels with marble faceting and jewel polishing processes. CNC machining tolerances It is true that CNC machining has taken manufacturing accuracy to very high levels. However, as it happens with other manufacturing process, the dimensions of the end product are never perfect. And here is where CNC machining tolerances play an important role. We have to remember that tolerances represent the maximum allowed variation for the same dimensions of two parts from the same series. They are usually set in the design phase. There are different aspects to be considered when setting the tolerances required: Mating components. Type of materials. Manufacturing processes available. Tighter tolerances are usually more expensive to achieve. Tolerances are usually classified according to how tight they are in the following groups: Fine tolerances. Medium tolerances. Coarse tolerances. Very coarse tolerances. In general, the limits for each group are set based on International Standards, including ANSI B4.1, ANSI B4.2, ISO 286, ISO 1829, ISO 2768, EN 20286 and JIS B 0401. For CNC machining tolerances, the standard limits are in the range of ± 0.005″ or 0.13mm. However, some very sophisticated services claim they can provide CNC machining tolerances as tight as ±0.0025mm. Here are some standard CNC machining tolerances depending on the CNC process: Lathe — ±0.005″ (0.13mm) Router — ± 0.005″ (0.13mm) 3-Axis Milling — ± 0.005″ (0.13mm) 5-Axis Milling — ± 0.005″ (0.13mm) Engraving — ± 0.005″ (0.13mm) Flatness — ± 0.010″ (0.25mm)
  • What are CNC machining services? Apr 17, 2025
    CNC machining services involve the use of computer - numerical - control (CNC) machines to fabricate parts and components. CNC machining services are highly automated, relying on pre - programmed software to control the movement of the machine tools. CNC machining services can be applied to a wide variety of materials, including metals, plastics, and composites.   CNC machining services are typically carried out using specialized CNC machines. These machines can be classified into different types, such as CNC milling machines, CNC lathes, and CNC routers. CNC machining services using milling machines are ideal for creating complex shapes by removing material from a workpiece. CNC machining services with lathes are mainly used for turning operations, producing cylindrical parts. CNC machining services involving routers are often used for cutting and shaping softer materials.   One of the key advantages of CNC machining services is their high precision. CNC machining services can achieve extremely tight tolerances, which is crucial in industries like aerospace and medical. CNC machining services also offer high repeatability. Once a program is set for a particular part, CNC machining services can reproduce that part with the same specifications over and over again. This is very beneficial for mass production.   CNC machining services are widely used in various industries. In the aerospace industry, CNC machining are used to manufacture components like turbine blades and wing structures. In the automotive industry, CNC machining services are essential for producing engine parts and chassis components. In the medical field, CNC machining services are utilized to fabricate surgical instruments and implants. CNC machining services also play an important role in the consumer goods industry, for example, in the production of high - end electronics and jewelry. he process of CNC machining services generally includes several steps. First, there is the design stage, where the part to be machined is designed using CAD software. Then, the CNC programming is done to convert the design into machine - readable instructions. After that, the setup of the CNC machine is carried out, including loading the proper tools and securing the workpiece. Next, the actual CNC machining services are performed as the machine follows the programmed instructions to cut or shape the material. Finally, quality control is conducted to ensure that the parts produced by CNC machining services meet the required standards.   CNC machining services also require careful consideration of several factors. Material selection is important for CNC machining services. Different materials may require different machining techniques and parameters. Tool selection is another aspect that affects CNC machining services. The right tools need to be chosen based on the material and the type of operation. Cost is also a factor in CNC machining services. The cost can vary depending on the complexity of the part, the material, and the quantity being produced.   In summary, CNC machining are a fundamental part of modern manufacturing. CNC machining services offer precision, repeatability, and the ability to create complex parts. CNC machining services are used in multiple industries for different applications. CNC machining continue to evolve with advancements in technology, enabling more efficient and accurate production. CNC machining services are an important aspect of the global manufacturing landscape. CNC machining services are constantly being improved to meet the increasing demands of various industries. CNC machining are a reliable and efficient way to produce high - quality parts and components. CNC machining services are here to stay and will continue to play a significant role in the future of manufacturing.      
  • Factory Show
    Factory Show Apr 28, 2025
    We are specialized in precise fabrication and supply of parts and components for  electronic non-standard isolation, microwave and nonferrous construction equipment, aerospace industry part, military industry part, consumer digital products, etc. We own many CNC precision machines and inspection equipment. Our Services include (but are not limited to): CNC milling, CNC turning, grinding; polishing, anodizing, plating, painting and assembly. We can process materials such as Aluminum, Brass, Bronze, Copper, Stainless Steel, Steel / Steel Alloy, Nylon, POM, Acrylic and Derlin.
1 2 3 4
Un total de 4paginas

¿Necesitar ayuda? Chatea con nosotros

dejar un mensaje
Para cualquier solicitud de información o soporte técnico, rellene el formulario. Todos los campos marcados con un asterisco* son obligatorios.
entregar
Buscando FAQs?
CONTÁCTENOS #
+86 15375471059

Nuestro horario

Lunes: 9 a. m. a 12 a. m.; 2 p. m. a 6 p. m.

Martes: 9 a. m. a 12 a. m.; 2 p. m. a 6 p. m.

Miércoles: 9 a. m. a 12 a. m.; 2 p. m. a 6 p. m.

Jueves: 9 a. m. a 12 a. m.; 2 p. m. a 6 p. m.

Viernes: 9 a. m. a 12 a. m.; 2 p. m. a 6 p. m.

(Todos los horarios anteriores están en horario de China)

Puede enviarnos un correo electrónico fuera del horario laboral y organizaremos personal comercial para brindarle servicios.

Hogar

Productos

Whatsapp

Contáctenos